A Comparative Study of Velocity Statistics of Hydrodynamic and Magnetohydrodynamic Turbulence

نویسنده

  • Jungyeon Cho
چکیده

Turbulence in an incompressible fluid with and without a magnetic field as well as moderately compressible MHD turbulence are compared. The results of three numerical simulation models in three dimensions of resolution up to 512 are used for this purpose. The compatibility of the spectra of all three models with the Kolmogorov spectrum is confirmed. For the magnetohydrodynamic (MHD) models the probability distribution functions of the velocity components perpendicular to the external magnetic field are like the incompressible hydrodynamic (HD) model while those parallel to the field have a smaller range of velocities. The probability distribution functions of the transverse velocity increments for the MHD models decline slower than the incompressible HD model. The similarity of incompressible HD and both incompressible and compressible MHD turbulence persists over high order longitudinal structure function scaling exponents measured in the global reference frame as well as for motions perpendicular to the local mean field. In these two frames the longitudinal scaling exponents of both MHD models seem to follow theoretical incompressible HD dissipation structure predictions while the transverse scaling exponents of the incompressible MHD model seem to follow the predictions for incompressible MHD. In the local magnetic system the motions parallel to the local mean field for both MHD models are different from incompressible HD motions. The fields of the MHD simulations are decomposed into Alfvenic, fast, and slow modes. In the global reference frame and for motions perpendicular to the local mean field the Alfvenic mode is mostly responsible for the fact that the longitudinal components of both MHD models follow the incompressible HD model and the incompressible HD theoretical dissipation structure predictions. In the global reference frame for the incompressible MHD model both the Alfvenic and slow modes seem to contribute significantly to the fact that the transverse components follow the incompressible MHD theoretical predictions. For motions perpendicular to the magnetic field for the incompressible MHD model it appears that the slow mode contributes most to the fact that the transverse component seems to follow the incompressible MHD predictions. PACS 47.27.E· 52.30.Cv · 52.35.B · 95.30.Qd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic Properties of Compressible MHD Turbulence: Implications for Molecular Clouds

Recent advances in understanding of the basic properties of compressible Magnetohydrodynamic (MHD) turbulence call for revisions of some of the generally accepted concepts. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions is not tenable. Alfven, slow and fast modes of MHD turbulence foll...

متن کامل

Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.

We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically suppo...

متن کامل

Statistical properties of compressible hydrodynamic and magnetohydrodynamic turbulence

In this work, statistical properties of compressible hydrodynamic and magnetohydrodynamic turbulence are studied using direct numerical simulations. The properties of turbulent flows change when average flow velocities within the turbulence exceed the speed of sound in the medium. High flow velocities lead to the formation of shocks, and some of the base assumptions of turbulence theories of in...

متن کامل

Simulations of MHD Turbulence in a Strongly Magnetized Medium

We analyze 3D numerical simulations of driven incompressible magnetohydrodynamic (MHD) turbulence in a periodic box threaded by a moderately strong external magnetic field. We sum over nonlinear interactions within Fourier wavebands and find that the time scale for the energy cascade is consistent with the Goldreich-Sridhar model of strong MHD turbulence. Using higher order longitudinal structu...

متن کامل

Simulations of Electron Magnetohydrodynamic Turbulence

We present numerical simulations of electron magnetohydrodynamic (EMHD) and electron reduced MHD (ERMHD) turbulence. Comparing scaling relations, we find that both EMHD and ERMHD turbulence show similar spectra and anisotropy. We develop new techniques to study anisotropy of EMHD turbulence. Our detailed study of anisotropy of EMHD turbulence supports our earlier result of k‖ ∝ k ⊥ scaling, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006